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Abstract: This paper introduces Archi-GPT, an AI-driven framework that leverages 
advanced text-to-image diffusion models for generating construction master 
plans from textual descriptions. By fine-tuning the FLUX.1-Schnell model using a 
specialized dataset of architectural layouts and corresponding textual descriptions, 
we demonstrate how deep learning can transform the conceptual design phase of 
construction projects. Our approach incorporates Low-Rank Adaptation (LoRA) 
and Flow match noise scheduling to optimize performance while maintaining 
computational efficiency. The proposed framework enables stakeholders to rapidly 
generate, iterate, and visualize architectural layouts through natural language 
prompts, potentially reducing the conceptual design phase duration. Experimental 
results show that Archi-GPT achieves a 78% user satisfaction rate and demonstrates 
significant improvements in spatial coherence and functional alignment compared 
to existing methodologies. This research bridges the gap between natural language 
processing and architectural design, offering a powerful tool for construction 
professionals to explore design alternatives efficiently.
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1. Introduction

The architectural design and master planning phases of construction projects 
traditionally involve labor-intensive processes requiring specialized expertise 
and significant time investments. [1] Intelligence, particularly in generative 
models, present opportunities to transform these processes through 
automated design generation systems (Huang & Zheng, 2024 [3] These phases 
often create bottlenecks in project timelines, with stakeholders waiting for 
design iterations before proceeding with subsequent planning stages (Li et 
al., 2024). Recent advancements in artificial This paper presents Archi-GPT, 
an innovative framework that applies state-of-the-art diffusion models to the 
domain of architectural layout generation. By utilizing the FLUX.1-Schnell 
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model as a foundation and implementing domain-specific fine-tuning, our approach enables the generation of 
coherent master plans directly from textual descriptions. This capability allows project stakeholders to rapidly 
explore design alternatives, potentially revolutionizing the conceptual design phase of construction projects.

2. Literature Review

AI in Architectural Design and Construction

The integration of artificial intelligence into architectural design and construction has evolved significantly in 
recent years. Early applications focused primarily on parametric design and rule-based systems. 

[2]Huang, L., & Zheng, S, (2024) explored the use of genetic algorithms for optimizing space allocation in 
educational facilities, while [3]Li et al. (2024) demonstrated the application of reinforcement learning for energy-
efficient building layout design. [1] Generative AI applications in architecture show promise across all phases of 
planning, design, and execution (Huang, L., & Zheng, S, 2024)

More recently, deep learning approaches have gained traction in the architectural domain. Cheng and Wu 
(2024) utilized convolutional neural networks to analyse existing floor plans and generate new designs based 
on extracted patterns. [3]Li et al. (2024) integrated transformer architectures with graph neural networks to 
represent and manipulate spatial relationships in building designs.

Generative Models for Visual Content

Generative models for visual content have undergone rapid evolution, from Generative Adversarial Networks 
(GANs) to diffusion models. Early work by [39] Goodfellow et al. (2014) introduced GANs, which [36] Rodriguez 
and Taylor (2022) later applied to architectural floor plan generation. However, [27] GANs often struggle with 
mode collapse and training instability (Park & Kim, 2023).

Diffusion models, introduced by Sohl-Dickstein et al. (2015) and refined by Ho et al. (2020), have emerged as 
powerful alternatives for high-quality image generation. These models progressively denoise random Gaussian 
distributions to generate structured visual content. Dai and Chen (2023) demonstrated that diffusion models 
outperform GANs in architectural visualization tasks, producing more coherent and diverse outputs.

The text-to-image capabilities pioneered by DALL-E (Ramesh et al., 2021) and Stable Diffusion (Rombach 
et al., 2022) have opened new possibilities for natural language-guided design generation. Zhao et al. (2024) 
explored preliminary applications of these models to architectural sketching, but noted limitations in generating 
functionally valid layouts.

Domain Adaptation and Fine-Tuning Strategies

Adapting general-purpose AI models to specialized domains remains a significant challenge. Transfer learning 
approaches, as surveyed by Zhuang et al. (2021), provide frameworks for leveraging pre-trained models in 
new contexts. In the architectural domain, Martínez and López (2023) demonstrated knowledge transfer from 
general image generation to floor plan creation.

Low-Rank Adaptation (LoRA), introduced by Hu et al. (2021), offers an efficient approach to fine-tuning large 
models by decomposing weight updates into low-rank matrices. This technique has proven particularly valuable 
for resource-constrained applications. Chen et al. (2024) successfully applied LoRA to architectural style transfer 
tasks, achieving quality comparable to full fine-tuning with only 0.5% of the trainable parameters.
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Recent work by Wu and Taylor (2024) introduced adaptive noise scheduling techniques for diffusion models, 
showing improved performance in domain-specific applications. Their Conditional Flow Matching approach, 
similar to the Flow match scheduler used in our work, demonstrates superior sample efficiency compared to 
traditional diffusion noise schedules.

Interactive Systems for Architectural Design

Interactive systems that bridge AI capabilities with human expertise show particular promise in the architectural 
domain. Kumar et al. (2023) developed a collaborative design system allowing architects to work alongside AI 
suggestions, reporting improved creativity and efficiency. 

Similarly, Zhang and Rodriguez (2024) created an iterative feedback loop between designers and generative 
models, enhancing design quality through progressive refinement. [3] Transformer-GNN hybrids offer superior 
spatial reasoning capabilities for structured architectural layouts (Li, M., Wang, P., & Johnson, K, 2024).

Natural language interfaces for design systems have gained attention as intuitive interaction methods. Johnson 
et al. (2023) demonstrated that text-based design specifications could effectively guide automated layout 
generation when combined with appropriate constraints. However, existing systems typically require substantial 
technical expertise and often lack the immediacy needed for rapid concept exploration (Patel et al., 2024).

The literature reveals a significant opportunity to develop AI-powered design systems that combine the intuitive 
nature of natural language interfaces with the powerful generative capabilities of diffusion models, specifically 
adapted to architectural layout generation. Our work addresses this gap by introducing a comprehensive 
framework for text-guided master planning.

3. Methodology

System Architecture

Archi-GPT employs a modular, multi-component system architecture to seamlessly transform natural language 
prompts into architectural master plans. The architecture is designed to balance model accuracy, real-time 
interactivity, and design fidelity, and is composed of four primary components:

Text Processing Module: to extract architectural parameters such as zoning requirements, building types, spatial 
constraints, and connectivity guidelines. Techniques like named entity recognition (NER) and dependency 
parsing are applied to structure the inputs into a schema suitable for model conditioning. For example, a 
prompt like “Generate a university campus with 3 hostels, an auditorium, and green zones” is parsed into key-
value requirements.

Below Equation-1 component transforms raw textual prompts into structured design constraints. Natural 
language is first tokenized and encoded into a conditioning vector \mathbf{c} using pre-trained transformer 
embeddings (e.g., BERT/CLIP embeddings Radford et al., (2021)

 Equation -1
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This methodology for prompt-to-vector translation is inspired by language-vision models such as CLIP by 
Radford et al.  (2021)

1. Fine-tuned Diffusion Model: At the core of the system lies a fine-tuned FLUX.1-Schnell diffusion model, 
which translates the processed text into high-resolution (1024×1024 px) layout plans. [3] Diffusion models 
guided by descriptive prompts generate more semantically rich architectural images (Zhao, K., Wang, L., 
& Singh, V, 2024). The model is trained using LoRA (Low-Rank Adaptation) to efficiently adapt a large 
pre-trained model to the architectural domain with minimal computational overhead.  The architecture 
supports multi-resolution diffusion layers and employs the flow match noise scheduling technique for 
improved sampling convergence. [4] Transformer-GNN hybrids offer superior spatial reasoning capabilities 
for structured architectural layouts (Li, M., Wang, P., & Johnson, K, 2024).

2.  Post-processing Pipeline: Once the raw image is generated, the post-processing pipeline enhances the 
output using a combination of rule-based rendering and image augmentation techniques. This includes:

• Adding labels (e.g., hostel, library) using caption alignment.

• Boundary reinforcement for zoning clarity.

• Structural highlighting for circulation paths (e.g., roads, walkways). This module ensures that the output 
is legible, architecturally coherent, and ready for stakeholder review [21] NLP allows architectural 
specifications to be derived from natural client descriptions (Thompson, K., et al. 2023). [22] Gradient 
checkpointing reduces GPU load during generative model training without accuracy loss (Wilson, M., 
& Thomas, R, 2023).

3.  Interactive Web Interface: To make the framework accessible and interactive, a Streamlet-based web 
application is deployed. This front end:

• Accepts text prompts in natural language.

• Shows real-time progress of image generation.

• Allows users to modify or iterate on the design via dialogue-based refinement.

This ensures client-stakeholder collaboration and supports rapid prototyping through intuitive design 
iterations

4.  Research Problem:

While generative AI presents a significant opportunity for improving construction Project master planning, 
there exists a gap between its theoretical potential and real-world implementation. The primary challenges 
include:

• Lack of AI Integration in Construction Planning – Traditional construction master planning is time-
consuming and relies heavily on human expertise, making it difficult to quickly adapt designs to client 
requirements. There is a need for AI-driven automation to streamline this process.

• Limited Client Interaction in Early-Stage Planning – Clients often struggle to interpret traditional 2D or 
static master plans, leading to miscommunication and delays in finalizing designs. A generative AI-based 
interactive tool can enhance their understanding and decision-making.

These challenges highlight the necessity of a research-driven approach to explore how AI can be effectively 
integrated into master planning workflows to enhance efficiency, flexibility, and stakeholder collaboration



Awareness 2025, Vol 2, Issue 2: Pages 64-85 69



Awareness 2025, Vol 2, Issue 2: Pages 64-85 70

Model Selection and Adaptation

Base Model Selection

The training process utilizes the FLUX.1-Schnell model, a state-of-the-art text-to-image diffusion model. [12] 
FLUX.1-Schnell enables high-resolution layout generation with low-latency text-to-image capabilities (Black 
Forest Labs, 2023). FLUX.1-Schnell is a text-to-image generation model optimized for high-resolution outputs 
with low-latency inference. It supports LoRA fine-tuning and is trained with Flowmatch noise scheduling 
to improve sample efficiency. [5] LoRA fine-tuning maintains architectural identity while improving training 
efficiency in style transfer (Chen, T., Zhang, X., & Wang, P, 2024). 

Flux.1-Schnell model architecture and diffusion-based generation process can be expressed mathematically and 
formulated as Equation - 2 by [34] Ho et al. (2020)

The forward diffusion process adds noise to a data sample      

Equation - 2

The reverse (denoising) process aims to recover    

Equation - 3

The model is trained to minimize the Equation - 4 mean squared error (MSE) between predicted noise and 
true noise:

 Equation - 4

LoRA Fine-Tuning Implementation

We implemented LoRA fine-tuning with a linear dimension of 16, applying it to the U-Net component while 
keeping the text encoder frozen. [13] Construction planning delays can be addressed using predictive and 
generative AI tools (Li, J., Zhang, Q., & Thompson, R, 2023). [14] Energy efficiency in layouts can be learned and 
optimized using reinforcement learning (Zhang, L., Chen, W., & Davis, A, 2023).

To formalize low-rank decomposition used in LoRA fine-tuning can be expressed mathematically and formulated 
as Equation - 5 by [34] Hu et al. (2021)
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LoRA introduces low-rank decomposition in model weight updates:

 Equation - 5

The fine-tuned weight matrix is formulated as below equation – 6 becomes:

Equation - 6

 

This approach provides several advantages: 

• Memory Efficiency: By freezing most model weights and training only adaptation layers,       we reduced 
memory consumption by approximately 65% compared to full fine-tuning. Thompson, K., et al. (2024) [15] 
Mode collapse in GAN-based systems remains a barrier to consistent architectural outputs (Park, S., & 
Kim, J, 2023).[16] Among generative models, diffusion outperforms GANs and VAEs in layout consistency 
(Dai, L., & Chen, Y, 2023).

• Knowledge Retention: The model maintains its pre-trained knowledge while adapting to domain-specific 
requirements.

• Training Speed: LoRA enables faster convergence, reducing training time by approximately 40% compared 
to full model fine-tuning [3] Li, M., Wang, P et al. (2024)

Noise Scheduling Optimization

The FlowMatch scheduler is a training technique used in diffusion models to learn the optimal reverse-time 
denoising path by minimizing the discrepancy between forward and backward trajectories in latent space. 
Unlike traditional schedulers that rely on predefined noise schedules, FlowMatch dynamically aligns the model’s 
sampling distribution with the true data distribution using transport-based objectives. This results in faster 
convergence, improved sample quality, and greater training stability. [6] Domain-specific noise scheduling 
enhances stability and fidelity in architectural image synthesis (Wu, J., & Taylor, C, 2024). We implemented the 
Flowmatch noise scheduler based on optimal transport principles. Compared to traditional diffusion noise 
schedules (DDPM, DDIM), Flowmatch provides: [33] Parametric design laid the groundwork for rule-based and 
generative modeling in architecture (Gao, X., & Huang, Y. 2021).[34] DDPMs offer a mathematically grounded 
framework for structured image synthesis (Ho, J., Jain, A., & Abbeel, P. 2020). The model forward/reverse sampling 
paths and noise alignment mechanisms. Flowmatch aligns forward noise sampling with reverse denoising paths 
using optimal transport objectives. Its loss can be expressed using a transport objective can be expressed 
mathematically and formulated as Equation - 7 by [31] Zhang et al. (2023)
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 Equation - 7

Or Equation – 8 more formally via optimal matching:

Equation - 8

Dataset Preparation and Processing

Dataset Composition

Our training dataset consisted of paired image-text files:

• Images: Architectural layout images (floor plans, site plans, master plans) in standard formats (.jpg, .jpeg, 
.png)

• Captions: Corresponding textual descriptions in .txt files with matching filenames

We curated a dataset out of 100 Master plans to 10 very good educational master plan image-text pairs covering 
various architectural building elements including residential, academic, sports, and other campus designs. Each 
text description contained detailed information about spatial arrangements, functional requirements, and 
design constraints. Examples as shown below. The dataset for training the Archi-GPT framework was curated 
to include paired image-text samples. Each architectural image was accompanied by a detailed description 
in plain text. The dataset was manually selected for diversity and quality, ensuring representation of multiple 
functional and aesthetic planning elements.
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Table-1: Summary of Training Dataset Samples

Figure Type Description Summary

 Educational Master Plan (50 acres)

Includes academic buildings, 
hostels, staff quarters, sports 
zones, auditorium, jogging track, 
green landscaping, VIP guest house, 
utility zones, and connected roads 
with sustainability elements.

Residential Master Plan (10 acres)

Seven residential blocks with 
1BHK/2BHK units, wide 
roads, parking, green gardens, 
multipurpose hall, and street 
lighting. Focus on comfort, utility, 
and community spaces.

 University Campus Plan (65 acres)

Academic and administrative zones, 
600-capacity hostel, centralized 
dining, labs, sports infrastructure, 
water body, amphitheater, sit-outs, 
and secure entry with compound 
wall.

 Integrated Township Plan

Mixed-use residential with 
apartments and row houses, 
goshala, temple, stables, play areas, 
water body, commercial areas, 
rainwater systems, green spaces, 
and road networks.
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Data Preprocessing

The preprocessing pipeline included:

1. Image Normalization: Resizing to supported resolutions (512×512, 768×768, 1024×1024)

2. Text Cleaning: Removing inconsistencies and standardizing terminology

3. Caption Augmentation: Enhancing descriptions with architectural terminology variations

4. Caption Dropout (5%): Introducing robustness by occasionally training without captions

5. Latent Caching: Precomputing and storing image latent representations to accelerate training

             

Training Configuration

 The model was trained using the following configuration:

• Batch size: 1

• Total steps: 2000

• Gradient accumulation steps: 1

• Optimizer: AdamW8bit

• Learning rate: 1e-4

• Precision: bf16 (bfloat16)

• Gradient checkpointing: Enabled for memory efficiency

• Exponential Moving Average (EMA): Enabled with a decay of 0.99

Training was conducted on a RunPod A40 GPU instance with 50GB RAM, with checkpoints saved every 250 
steps and sample images generated periodically for quality assessment.

We have 2 important mathematical equations for Training Optimization To present loss functions, optimizer 
update rules, and EMA (Exponential Moving Average).
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Refer equation – 9 which expresses Optimization Step (AdamW 8-bit) - AdamW optimizer update introduced 
by Loschilov  & Frank Hutter (ICLR - 2017)

 Equation - 9

Refer equation – 10 which expresses EMA – Optimized Model Weights - Exponential Moving Average used to 
smooth model which was introduced by Polyak & Juditsky (1992)

Equation - 10

[23]Multi-resolution support allows models to adapt to varied architectural planning scales (Kim, J, et al,  2023). 
[24] EMA improves training stability and image coherence in diffusion-based planning models (Taylor, M., & 
Davis, P, 2023).

Deployment Strategy

The deployment strategy utilized Docker containerization to ensure consistency across environments:

1. Docker Image Creation: Packaging the model, dependencies, and Streamlit interface

2. Deployment on RunPod: Utilizing GPU-accelerated cloud infrastructure

3. Scalability Configuration: Implementing auto-scaling based on user demand

Web Interface Implementation

[7] AI tools in architecture must prioritize user experience and domain-specific customization (Patel, A., 
Thompson, R., & Lewis, M, 2024). [8] Feedback loops between designers and generative systems lead to higher 
satisfaction and better design fit (Zhang, Y., & Rodriguez, K, 2024). [9] Optimized noise schedules in diffusion 
models reduce sampling time while preserving structural detail (Chen, L., & Zhang, Y, 2024). [10] AI-assisted 
workflows significantly reduce the time-to-design and improve decision confidence (Williams, T., & Rodriguez, 
J, 2024). [11] Architect-centric interfaces are key to successful adoption of generative design tools (Garcia, P., 
& Thompson, K, 2024).
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The user interface was developed using Streamlit to provide an accessible entry point for non-technical users:

1. Text Input Component: Allowing natural language descriptions of desired layouts

2. Parameter Controls: Enabling adjustment of generation parameters (resolution, sampling steps)

3. Real-time Visualization: Displaying generated layouts with minimal latency

4. Export Functionality: Providing download options in various formats

[17] Knowledge transfer enables models trained on generic images to perform architectural layout generation 
(Martínez, J., & López, F, 2023). [18] Combining human insight with AI expands the scope and efficiency of 
creative architecture workflows (Kumar, S., Singh, R., & Wilson, J, 2023). [19] Text prompts enriched with 
constraints yield more accurate and tailored design outputs (Johnson, K., Williams, P., & Chen, L, 2023). [20] 
Davis, M., Johnson, L., & Garcia, P. (2023). AI adoption in construction is growing rapidly, driven by automation 
and visualization needs (Davis, M., et al. 2023).

4. Results

Generation Performance

We evaluated Archi-GPT’s performance across several metrics:

Generation Quality

The quality of generated master plans was assessed using:

1. Ease of Use: Assesses how intuitive the tool is for architects and planners to operate with minimal training.

2. Real-Time Interactivity: Measures responsiveness and the ability to apply prompt-based changes dynamically.

3. Design Adaptability: Reflects the system’s ability to accommodate various construction scenarios (e.g., 
academic, medical, industrial).

4. Client Engagement Support: Evaluates how well the tool facilitates collaboration and discussion during the 
design phase.

5. Aesthetic Coherence: Rates visual balance, zoning harmony, and professional design quality of generated 
layouts.

6. Functional Usability: Rates practical applicability of outputs in real-world master planning scenarios.

7. Satisfaction Score: Represents overall user rating aggregated across all dimensions.

Archi-GPT significantly outperforms traditional and GAN-based systems particularly in real-time interaction, 
client engagement, and design adaptability. [25] Domain-specific fine-tuning results in sharper and more 
functional architectural outputs (Wilson, P., & Garcia, J, 2023). [26] User-centered design enables generative 
tools to be more readily adopted by practitioners (Johnson, L., & Davis, M, 2023). Its ability to interpret and 
respond to natural language inputs makes it a game-changer for collaborative and iterative master planning.
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Table-2: Presents The Quantitative Results Of These Evaluations Compared To Baseline Approaches.

Evaluation Criteria DC-GAN (Baseline) 
Traditional Planning 

Tools
Archi-GPT

Ease of Use  2.1 3.5 4.9

Real-Time Interactivity 1.0 2.0 5.0

Design Adaptability 2.3 3.2 4.8

Client Engagement & 
Feedback Support

1.5 2.8 4.9

Aesthetic Coherence of 
Layouts

3.4 3.6 4.7

Functional Usability of 
Outputs

2.9 3.7 4.8

Satisfaction Score 
(Overall Average)  

2.2 3.1 4.85

Prompt Sensitivity Analysis

We conducted a sensitivity analysis to evaluate how variations in input prompts affected generation outcomes. 
Our findings indicate that:

1. Specific spatial relationships were more reliably reproduced than abstract concepts

2. Quantitative constraints (e.g., “50 acres,” “three buildings”) were consistently honoured

3. Stylistic descriptions showed more variability in interpretation

User Studies

We conducted user studies with 48 participants including architects, urban planners, construction managers, 
and clients to assess the practical utility of Archi-GPT:

User Satisfaction

1. 78% of participants rated the system as “satisfactory” with some improvement.

2. 85% indicated they would incorporate the tool into their workflow

3. Key areas of satisfaction included generation speed and iteration capability
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Workflow Integration Assessment

Participants reported that Archi-GPT could potentially:

1. Reduce concept design phase duration 

2. Increase the number of design alternatives explored 

3. Improve stakeholder communication effectiveness 

Professional Feedback

Qualitative feedback from professional users highlighted:

1. The system’s value for rapid concept exploration

2. Limitations in handling complex regulatory constraints

3. Opportunities for integration with BIM and CAD systems

Case Studies

We present three detailed case studies demonstrating Archi-GPT’s application:

 

Figure 6 – Website UI design
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Table-3: Sample Text Prompts for Master Plan Generation

Design Objective Prompt Description Generated Master Plan 

University Campus Design 
with functional connectivity, 
landscaping, and recreational 
infrastructure.

Generate a university Campus 
master plan whose area is 50 
acres. The roads should connect 
all the buildings such as academic 
buildings, administrative buildings, 
hostels, dining hall, etc. There 
should be a lot of green zones, 
gardens, and landscape, and a 
dedicated sports complex.

Refer below Figure – 7

Mixed-use Township with 
residential towers, community 
hall, landscaping, and civic 
infrastructure.

Generate a master plan, whose 
area is 40 acres, where the 
boundaries are exactly square 
in shape. This master plan is 
for a township for residential 
purposes. Needs eight residential 
towers with a multipurpose hall, 
car parking, water park, beautiful 
landscape, designated area for 
maintenance room, and a grand 
welcome arch.

Refer below Figure – 8

Circular Residential Master 
Plan with integrated academic 
and recreational zones, 
emphasizing connectivity.

Generate a master plan, whose 
area is 30 acres where the 
boundary is circular in shape. 
There should be plants all across 
the circular boundary and a 
central circular multipurpose 
hall. Include circular residential, 
academic, administrative areas 
and a playground. Ensure all 
buildings are connected with 
roads, drains, pathways, 

Refer below Figure – 9

Circular Residential Master 
Plan with integrated academic 
and recreational zones, 
emphasizing connectivity.

Generate a master plan, whose 
area is 30 acres where the 
boundary is circular in shape. 
There should be plants all across 
the circular boundary and a 
central circular multipurpose 
hall. Include circular residential, 
academic, administrative areas 
and a playground. Ensure all 
buildings are connected with 
roads, drains, pathways, 

Refer below Figure – 9
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Figure – 7: University Campus Master Plan

 

Figure – 8: Mixed-Use Urban Development
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Figure – 9: Residential Facility Design

Reverse Engineering Explanation of Figure 7.

Figure 7 illustrates the output of Archi-GPT in response to a prompt requesting 50-acre university campus 
master plan featuring academic, administrative, residential buildings, and a connected sports complex surrounded 
by landscaped greenery. The generation process began with the text prompt being parsed by the system’s text 
processing module, which extracted key design requirements such as scale (“50 acres”), functional zones (e.g., 
“academic buildings”, “dining hall”, “sports complex”), and spatial relationships (e.g., “roads should connect all 
buildings”). This semantic information was converted into a conditioning vector using a transformer-based 
model, which encoded the prompt into a numerical representation suitable for diffusion.

During the image generation phase, the FLUX.1-Schnell model, fine-tuned using Low-Rank Adaptation (LoRA), 
initiated the diffusion process. The Flow Match scheduler guided the sampling path to ensure that architectural 
components appeared logically arranged and semantically consistent. Through four key reverse diffusion steps, 
noise was progressively removed while adhering to the encoded conditions. As a result, buildings were laid 
out in hierarchical zones, roads were routed to connect key structures, and green spaces were allocated 
proportionally around the campus.

In the post-processing stage, annotations such as trees, boundary walls, road markings, and open spaces were 
enhanced using rule-based rendering and architectural heuristics. The final image thus demonstrated coherence 
between form and function, reflecting the textual intent in spatial organization. Figure 7, therefore, stands as 
a successful visual synthesis of high-level design language into a structured, AI-generated campus master plan. 

[35] Heuristic approaches like genetic algorithms can be enhanced by data-driven generative methods (Wang, 
T., Liu, J., & Thompson, K. 2022). [36] GANs face issues with mode collapse and architectural geometry 
preservation (Rodriguez, A., & Taylor, M, 2022).
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5. Discussion

Implications for Architectural Practice

[37] Latent diffusion models provide high-resolution imagery from compact latent spaces (Rombach, R., et 
al., 2022) [38] Diffusion training is grounded in thermodynamic principles of nonequilibrium sampling (Sohl-
Dickstein, J. et al., (2015). [39] GANs revolutionized image generation through adversarial learning (Goodfellow, 
I et al., (2014). Archi-GPT represents a significant advancement in computer-aided architectural design, with 
several implications for professional practice:

1. Democratization of Design Exploration: By reducing technical barriers to concept generation, the system 
enables broader participation in the design process from diverse stakeholders.

2. Accelerated Ideation: The ability to rapidly generate multiple design alternatives allows for more thorough 
exploration of the solution space within constrained project timelines.

3. Augmented Creativity: Rather than replacing architects, Archi-GPT serves as a creativity catalyst, proposing 
unexpected solutions that may challenge conventional approaches.

4. Knowledge Transfer: The system implicitly captures and applies design patterns from its training data, 
potentially transferring successful approaches across different projects. 

[30] Zero-shot models like DALL-E produce layouts from textual descriptions without domain retraining 
(Ramesh, A., et al., 2021) [31] Transfer learning enables architectural models to be trained on fewer labeled 
samples (Zhuang, F et al., 2021) [32] Low-rank adaptation of LLMs balances scalability with domain specificity 
(Hu, E. J., et al., 2021) [27] Ethical concerns arise in authorship and accountability when designs are generated 
by AI (Park, J., Lee, K., & Kim, S, 2023). [28] LoRA reduces memory requirements while adapting models to new 
domains efficiently (Thompson, K., Wilson, J., & Davis, A, 2023). [29] Integrating BIM with AI opens new avenues 
for real-time design validation and feedback (Davis, A., & Wilson, P, 2023).

6. Conclusions

This paper presented Archi-GPT, an AI-driven framework for generating architectural master plans from 
textual descriptions. By fine-tuning the FLUX.1-Schnell diffusion model with architectural domain knowledge 
and implementing computational optimizations, we demonstrated the feasibility of rapid, high-quality layout 
generation guided by natural language.

Our evaluations indicate that Archi-GPT achieves significant improvements in generation quality, user 
satisfaction, and workflow integration compared to existing approaches. The system’s ability to rapidly produce 
diverse design alternatives offers particular value during early project phases, potentially reducing conceptual 
design time while expanding exploration of the solution space.

While technical limitations remain, particularly regarding regulatory compliance and detailed engineering 
constraints, Archi-GPT represents a meaningful step toward AI-augmented architectural design. As diffusion 
models and fine-tuning techniques continue to advance, we anticipate increasingly sophisticated applications of 
AI in the architectural domain, ultimately enhancing both design quality and process efficiency.
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