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Abstract: The performance of Deep Neural Networks (DNN) based speech 
enhancement techniques often degrades when encountering a speaker mismatch 
between the training and testing conditions. The acoustic properties of speech 
vary significantly across different speakers. Speaker adaptation in DNNs aims to 
address this challenge by adapting the networks to individual speaker characteristics 
using smaller amounts of training data. Recent research has demonstrated that the 
performance of DNN-based speech enhancement techniques improves when they 
are adapted to specific speakers’ spectral characteristics. This paper presents an 
overview of the current methodologies and advancements in speaker adaptation 
for DNNs. It also contributes to the understanding of how various adaptation 
strategies are employed to different DNN architectures. We highlight the strengths 
and weaknesses of each adaptation strategy and provide recommendations for 
achieving optimal performance.
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1. Introduction

Model based speech enhancement approaches, such as the hidden Markov 
model (HMM), codebooks and DNNs, which rely on a trained model of 
speech data, have demonstrated superior results compared to traditional 
techniques like spectral subtraction and statistically-based methods, 
particularly in the presence of non-stationary noise conditions [1]. Among 
these, DNNs have gained prominence due to their exceptional ability to 
handle complex noise environments and superior acoustical modeling 
of speech. Despite the successes of DNN-based speech enhancement 
techniques, they often perform poorly when encountering speakers not 
seen during training [2]. The “one size fits all” approach of DNN-based 
speech enhancement falls short when confronted with diverse acoustical 
speech patterns, leading to suboptimal performance.

Speaker adaptation is a technique used in speech processing to improve 
performance by adapting a speech model to a target speaker’s characteristics. 
This approach is crucial since the variability in speech among different 
speakers significantly impacts the accuracy of speech processing systems, 
such as speech recognition, speaker verification, speaker identification, and 
speech enhancement.

Speaker adaptation in DNNs aims to adapt DNNs to individual speakers’ 
spectral characteristics, thereby providing personalized speech enhancement. 
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Awareness 2024 Vol 1, Issue 2: Pages 4-12 5

The motivation for speaker adaptation in speech enhancement is driven by its potential impact on a wide range 
of applications such as mobile phones, teleconferencing systems [3], and hearing assistive devices [4], enhancing 
the quality and intelligibility of speech in a personalized manner, thereby improving the user experience.

The scope of this review is centered on exploring various speaker adaptation techniques in DNNs used for 
speech enhancement applications. This paper will assess the methodologies used for speaker adaptation, and 
highlight the improved speech enhancement performance results in recent research.

The remainder of the paper is organized as follows: Section 2 provides a discussion on general speaker 
adaptation techniques. Section 3 describes the recent advances in speaker adaptation techniques using DNNs 
for speech enhancement. The challenges are presented in Section 4. Finally, Section 5 presents the conclusions.

2. Traditional Speaker Adaptation Algorithms

Speaker adaptation of speech data models has been a topic of research for several decades, with speaker 
verification, speaker recognition, and speech recognition being the primary fields of application. The initial 
methods of speaker adaptation focused on Vector Quantization (VQ) models [5]. Later, the focus shifted to 
Maximum Likelihood Linear Regression (MLLR) and Maximum A Posteriori (MAP) methods. The early spectral 
models laid the groundwork for MLLR [6], which adjusts acoustical model parameters based on adaptation 
data to better match the spectral characteristics of the target speaker. MLLR adapts the mean vectors and 
covariance matrices of Gaussian components as follows:

       µˆs = Asµ + bs, (1)

                . (2)

MLLR and similar approaches [7, 8] are prevalent in speaker recognition. Gauvain and Lee introduced MAP 
estimation for adapting HMM/Gaussian Mixture Models (GMM), merging prior knowledge from speaker 
independent models with new speaker data to optimize model parameters [9]. MAP estimation maximizes:

          P(θ|X) ∝ p(X|θ)p(θ)r, (3)

where p(θ) is the prior distribution, and r is a weighting factor. In contrast, [10] involves learning transformations 
specific to a speaker during training and testing phases. Cluster adaptive training, which groups speakers by 
acoustic characteristics to adapt models, was introduced in [11].

3. Recent Advances of Speaker Adaptation Techniques using DNN for Speech Enhancement

Traditional speaker adaptation techniques, outlined in the previous section, mainly focused on model parameter 
adjustments and transformations of models whose parameters were interpretable. However, these methods 
cannot be directly extended to DNN architectures, as DNN lack parameter interpretability. Thus, DNN offer 
new opportunities and challenges to address speaker adaptation more robustly.

Speaker adaptation in DNN refers to modifying a pre-trained DNN to enhance performance for a new speaker 
without the need for extensive retraining from scratch. Studies have shown that this retraining approach 
outperforms training DNNs from scratch for speaker adaptation tasks [12]. Various speaker adaptation 
techniques for DNN include fine-tuning, learning hidden unit contributions, speaker adaptive training, I-vector 
adaptation and embedding layer adaptation. In this section, we will explore the various speaker adaptation 
strategies using DNNs for speech enhancement and they are given below.

3.1. Speaker and Noise Embedding

This technique involves embedding distinctive features of a speaker’s clean speech vectors and background 
noise vectors into the neural network. In [13], the authors develop a novel training framework that performs 
joint optimization of the speech enhancement model and the speaker embedding extraction process. Generally, 
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traditional approaches treat speaker embedding and speech enhancement modules as separate processes, 
leading to suboptimal speech enhancement performances. This paper introduces a joint learning mechanism 
where the speaker verification is pretrained and further adapted through a combined enhancement loss and 
speaker verification loss. This dynamically adapts to the speaker’s identity and acoustic environment, offering 
personalized speech enhancement performance. In [14], another novel Speaker-Aware Speech Enhancement 
(SASE) method extracts speaker information from a clean reference using LSTM layers and then employs a 
Convolutional Recurrent Neural Network (CRN) to embed the extracted speaker information. Even in this 
method, a joint learning framework is utilized, which optimizes speaker extraction through LSTM and speech 
enhancement through CRN simultaneously. With the extended self-attention mechanism, the proposed 
framework performs adaptation using just a few seconds of clean reference speech.

While previous works have used speaker information to guide speech enhancement, the authors in [15] utilize 
additional noise conditions to guide speech enhancement for various types of noise environments. The work 
incorporates Noise-Aware Training (NAT), which employs voice activity detection to differentiate between 
speech and non-speech frames and uses these non-speech frames as additional noise information. These non- 
speech frames represent the characteristics of the background noise, which are termed as Dynamic Noise 
Embedding (DNE). The extracted DNE is concatenated with features of the input speech signal and fed into 
the speech enhancement module to obtain the final enhanced speech.

The work in [16] investigated the utilization of speaker embeddings, like d-vectors, to selectively enhance the 
speech of target speakers while suppressing the background noise and other interfering speakers. The work 
proposes two new models: Personalized Deep Complex Convolution Recurrent Neural Network (DCCRN) 
that integrates the speaker d-vector as an additional input to personalize the enhancement, and Personalized 
Deep Convolution Attention U-Net (PDCAttUNet) that incorporates a self-attention mechanism to capture 
temporal dependencies and fine-tune the enhancement based on the target speaker’s characteristics. The 
attention mechanisms allow the network to focus more precisely on the relevant aspects of the target speaker. 
The work introduces a new metric for assessing the Target Speaker OverSuppression (TSOS), thereby ensuring 
that enhancement does not negatively impact the intelligibility of the target speaker. Building on the speaker 
extraction strategy, the authors in [17] employ a real-time, low-computational PercepNet framework and 
adapt the PercepNet by utilizing a speaker embedding. The uniqueness of this paper is that, despite the 
integration of advanced features and personalization, the personalized PercepNet maintains low complexity, 
making it deployable to edge devices.

A similar real-time DNN based personalized speech enhancement technique is proposed in [18]. Tencent 
Ethereal Audio Personalized Speech Enhancement (TEA-PSE) incorporates a two stage speech enhancement 
framework combined with the state-of-the-art speaker verification architecture, ECAPA-TDNN speaker 
encoder, to achieve personalized speech enhancement. The Enhanced Context-Aware Predictive Attention 
Delay Neural Network (ECAPA-TDNN) is used as an encoder to generate the speaker embedding from 
a target speaker’s enrollment, and these extracted embeddings are then used to condition the two-stage 
speech enhancement framework. This conditioning fine-tunes network weights to match the target speaker’s 
characteristics. The Tencent-Ethereal-Audio-Lab Personalized Speech Enhancement (TEA-PSE) system ranked 
1st in the ICASSP 2022 Deep Noise Suppression (DNS2022) challenge. The refined version of TEA-PSE, 
introduced in [19], TEA-PSE 2.0, introduces a subband processing approach that reduces computational 
complexity, complemented with improved speech enhancement performance. TEA-PSE 2.0 brings a 0.102 
OVRL personalized DNSMOS improvement with only 21.9% multiply-accumulate operations compared with 
the previous TEA-PSE. An extended version of TEA-PSE 2.0, introduced in [20] as TEA-PSE 3.0, integrates key 
novel approaches with TEA-PSE 2.0. the novel approaches of TEA-PSE 3.0 are:

• Subband Processing: TEA-PSE 3.0 employs subband processing using Squeezed Temporal Convolution 
Networks (TCN).

• ResidualSTM: A residual layer is added after each S-TNC layer to improve sequence modeling capabilities.

• Local-Global Representation (LGR): It combines local and global speech features to extract speaker- 
specific information.



Awareness 2024 Vol 1, Issue 2: Pages 4-12 7

TEA-PSE 3.0 ranked 1st in both ICASSP 2023 Deep Noise Suppression Challenge DNS-Challenge Track 1 and 
Track 2. Authors in [21] propose a novel multistage, multi-loss training framework that performs both full-
band personalized and non-personalized speech enhancement. The framework utilizes a speaker extraction 
network that employs speaker embeddings to adapt the DNN process for a particular speaker. The speaker 
extraction network consists of a 1-D convolutional layer processing the time-domain input signal. The network 
uses several GRU layers that are effective in modeling time-series data, capturing the temporal dynamics and 
dependencies within the speech signal. It also uses multiple feedforward networks and classification layers to 
fine-tune the network to differentiate between different speakers. Once the speaker embedding is generated, 
it is used by the speaker extraction network to filter out non-target speech and background noise and to 
enhance the target speaker. 

3.2. Meta-Learning

Often referred to as “learning to learn”, meta-learning enables a model to quickly adapt to new tasks or 
speakers with minimal training data of the target speaker. A novel speaker adaptation approach termed One 
Shot Speaker Adaptive Meta-Learning (OSSEM) is introduced in [22]. OSSEM combines a modified transformer 
with a Speaker-Specific Masking (SSM) to achieve real-time personalized speech enhancement. OSSEM has 
mainly two components:

• Modified Transformer: It is responsible for the speech enhancement task, which uses a convolutional 
encoder in the transformer instead of the traditional positional encoder [23].

• Speaker-Specific Masking: This network employs speaker embeddings to create masks that adjust the input 
features to the speech enhancement model, making the enhancement customized to the target speaker’s 
spectral characteristics.

OSSEM uses a meta-learning framework for rapid adaptation to new speakers. MetaLearning Framework: This 
is achieved by structuring the training process around support and query sets:

• Support Set: Used to adapt the model to the target speaker’s characteristics.

• Query Set: Used to evaluate the model’s performance post-speaker adaptation.

In the real time application phase, the OSSEM model adapts to a new speaker using a single utterance. 
OSSEM has shown competitive performance with other state-of-the-art real-time causal speech enhancement 
techniques. Another work in [24] utilized a meta-learning framework for speaker adaptation. In this work, 
a U-Net architecture is used as the meta-learner. Results from the work show that speech enhancement 
through meta-learning outperforms traditional speech enhancement techniques in few-shot learning scenarios 
where only a small amount of training data is available for adaptation.

3.3. Multi-Task Learning

The multi-task learning approach trains the neural network on multiple related tasks simultaneously, such as 
speech enhancement and speaker identification. By learning these related tasks together, the network can 
improve its generalization capabilities and performance on individual tasks. In [3], a framework for unified real- 
time personalized and non-personalized speech enhancement is introduced that integrates both personalized 
and non-personalized speech enhancement within a single DNN architecture. This framework consists of two 
components:

• Speaker Embedding Network: This network extracts the target speaker’s features to facilitate personalized 
enhancement [25]. ECAPA-TDNN is used as the speaker embedder as it achieves state-of-the-art results 
in several speaker recognition tasks.

• Enhancement Network: This network performs the actual speech enhancement. It is conditioned on 
the output of the speaker embedding network and a frame-wise control input that directs whether the 
enhancement should be personalized or non-personalized. This is accomplished using a binary input 
that dynamically switches between personalized and non-personalized models across the frames. This 
multitasking unified framework provides better speech enhancement results when compared to state-of- 
the-art architectures.
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3.4. Zero-Shot Learning

In [26], authors introduce a speech enhancement method based on a denoising autoencoder with multi- 
branched encoders (DAEME), that combines the robustness of deep learning with the flexibility of ensemble 
methods. The DAEME model has the following components:

• Multi-branched Encoder: Each branch is trained on a subset of the data characterized by certain noise 
types and speaker characteristics. This allows the encoder to handle different noise types and speaker 
characteristics effectively.

• Dynamically Sized Decision Tree (DSDT) Framework: The decision tree aids in partitioning the training 
data effectively.

• Decoder: After processing by the encoder branches, the outputs are fused by a decoder that consolidates 
the branched outputs into a single enhanced speech signal.

The DAEME model presents a novel speaker adaptation strategy where it adapts the DNN to new speakers 
and varying noise conditions without requiring retraining. In the work described in [27], authors perform 
personalized speech enhancement using zero-shot learning with a knowledge distillation framework. This 
approach allows for speaker adaptation without requiring speaker-specific clean speech data. In the knowledge 
distillation approach, a large, well-trained teacher model imparts knowledge to a smaller student model. 
The well-trained teacher model processes noisy speech to obtain enhanced speech outputs, which serve 
as pseudo-targets for training the compact student model in real-time during deployment. The authors in 
[28] introduce an ensemble of specialist modules through zero-shot learning to perform personalized speech 
enhancement. In this proposed method, an ensemble of specialist models is employed, where each specialist 
model is trained to handle a specific subset of training data characterized by speaker characteristics or noise 
types. A gating module estimates the relevance of each specialist for a given input during inference and selects 
the most appropriate specialist model to process the input. This approach adapts to new speaker and noise 
conditions without requiring retraining of the entire model. A Siamese network generates discriminative, 
speaker-specific embeddings that maximize or minimize the similarity of the output vectors depending on 
whether the input utterances are from the same speaker. These generated embeddings are used to train the 
set of speakers into different clusters through k-means clustering. The gating module is trained to predict to 
which cluster a new input belongs based on the speaker’s characteristics.

After individual training, the entire ensemble method is fine-tuned to optimize coordination between the 
gating module and the specialist modules. This framework reduces the computational complexity compared 
to the baseline while maintaining the same speech enhancement performance.

A similar work was proposed in [29], presenting a novel approach to speech enhancement (SE) using zero-shot 
learning combined with a Quality-Net based model selection strategy.

A central element of the proposed system is Quality-Net, a deep learning based non-intrusive quality assessment 
model trained to predict speech quality scores. Quality-Net is utilized in two key capacities:

• Model Training: During the offline phase, it assesses the quality of noisy speech samples and assists in 
clustering the training data to effectively train specialized SE models.

• Model Selection: In the online phase, it evaluates incoming noisy speech to select the optimal SE model 
for real time enhancement.

Two strategies are employed for zero shot model selection:

• ZMOS-QS (Quality Score based): Utilizes the quality scores predicted by the Quality-Net to cluster the 
training data and select the appropriate model at test time.

• ZMOS-QE (Quality Embedding based): Uses embeddings from the Quality-Net for clustering and model 
selection, focusing on latent representations that capture more nuanced aspects of speech quality.selection, 
focusing on latent representations that capture more nuanced aspects of speech quality.
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The proposed ZMOS approach, incorporating both the QS and QE strategies, provides superior speech 
enhancement performance compared to traditional and baseline systems.

In [30], authors present a self-supervised learning method to adapt speech enhancement models. The proposed 
method extracts speech features from unlabeled, in-the-wild noisy recordings of the target use without access 
to corresponding clean speech data. This addresses the privacy concerns and practical challenges associated 
with collecting clean speech data. The paper utilizes contrastive learning techniques that aid in refining the 
model to distinguish between different sounds within the noisy data. A data purification technique introduced 
in the paper identifies and prioritizes the cleaner parts of the noisy data during training. A novel personalization 
technique is proposed in [31] that uses Neural Speech Synthesis (NSS) for data augmentation. This study 
explores how synthetic data generated by advanced Text-To-Speech (TTS) systems can be utilized to train 
personalized speech enhancement when direct recordings of the target speaker are limited. In this work, two 
types of NSS systems are evaluated for the generation of target synthetic data:

• YourTTS: a multi-speaker, multilingual TTS system.

• AudioLM: an autoregressive speech synthesis system that does not rely on textual input.

Models are trained using a combination of real speech recordings and synthetic speech generated by YourTTS 
and AudioLM. The research findings suggest that better personalization of speech enhancement models is 
possible with the generation of high-quality synthetic data.

4. Challenges

DNNs lack direct interpretation of their parameters, making speaker adaptation intricate and complex. The 
multilayered architecture coupled with a complex framework of parameters, makes it difficult to understand 
how speaker specific changes in the network or input data affect the output.

DNNs are fixed at training time [32] and cannot undergo any structural alterations during actual deployment. 
Acoustical conditions change in real-time applications, which complicates the adaptation of DNNs. In [33], 
the authors introduced a novel approach for speaker adaptation using codebook integrated deep neural 
networks for speech enhancement. This method is advantageous as it can be applied to any DNN architecture 
and facilitates the adaptation of DNNs to multiple speakers without necessitating any modifications to the 
network itself.

Although the data augmentation technique decreases computational complexity by training the DNN with the 
target speaker’s synthetic data, offering some advantages, it often poses a limitation. Transitioning to another 
speaker requires retraining the entire DNN with the other speaker’s synthetic data, presenting a challenge of 
excessive retraining. Speaker adaptation techniques, by introducing a speaker extraction/auxiliary network to 
generate speaker embeddings, add to the computational complexity and processing time of the DNN. This can 
be a concern for their deployment on devices like hearing aids and mobile phones.

5. Conclusions

In this work, we have presented an overview of the current methodologies and techniques in speaker 
adaptation using DNN for speech enhancement. The study highlights the strengths of various adaptation 
techniques, including the use of speaker embeddings, zero-shot adaptation, few-shot learning, meta-learning 
approaches, and data augmentation. These methods have proven effective in adapting DNN to individual speaker 
characteristics. However, there are challenges related to DNN retraining when transitioning between different 
speakers and increased computational complexity. Despite the advancements in speaker adaptation, these 
challenges highlight the need for more efficient personalized models that provide better speech enhancement 
performance. These models should adapt to different speakers without the need to retrain the DNN for each 
transition and manage computational demands effectively.
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